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ABSTRACT 

We determine those regular cardinals x with the property that for each 
increasing x-chain of first countable spaces there is a compatible first coun- 
table topology on the union of the chain. Assuming V = L any such x must be 
weakly compact. It is relatively consistent with a supercompact cardinal that 
each x > co~ has the property. The proofs exploit the connection with interest- 
ing families of integer-valued functions. 

A natural and interesting investigation in set-theoretic topology is to deter- 

mine  the cardinal invariants  o f  a union o f  a chain o f  spaces, based on a 

knowledge o f  the invariants for  each o f  the spaces in the chain. When we say 

"increasing chain o f  topological spaces", we mean that i f  a < a '  then X~ is a 

subspace o f  X~. Many theorems o f  this nature appear  in [3]. Here,  we are 

interested in the character  o f  a space which is the union o f  a chain o f  first 

countable spaces. In [3] there is a p roo f  o f  the following theorem. I f x  > R 2 is a 

regular cardinal and {X~:a  < x} is an increasing chain o f  first countable 

spaces, then any compact  Hausdorf f  topology on the union, such that  each X~ 

is a subspace, is also first countable. This compactness  condit ion,  however,  is 

very restrictive. Indeed,  given an increasing chain o f  first countable spaces 

there may  be no compact  Hausdorf f  topology on the union which "extends" 

the chain, i.e. has each member  o f  the chain as a subspace. 

We answer the quest ion o f  which x have the proper ty  that  there is a 
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compatible first countable topology for the union of each increasing chain 

{X~ : a < r}  of first countable spaces. This question for x, the successor of 2 ~0, 

was brought to our attention by Andrew Berner. He observed that from an 

affirmative answer one could obtain a very easy proof of Theorem 1 in [4]. It is 

easy to see that without loss of generality we need only consider chains with 
length equal to some regular cardinal x. We call these x-chains. 

There are two natural topologies to put on the union of a x-chain. 

DEFINITION I. Suppose that Xis  the union of a z-chain {X~ : a < x}. The 

fine topology is the largest, or finest, topology which can be put on X such that 

each X~ is a subspace of X. The weak topology is the smallest, or coarsest, 

topology which can be put on X such that each X~ is a subspace of X. 

The reader can easily check that a set U is open in the fine topology if and 
only if U O X~ is open for each a < x. Similarly the family 

X -  U c l x = F : F c X p }  
#<a<r 

forms a base for the weak topology on X. 

It is immediate that the weak topology on an R0-chain of first countable 

spaces is again first countable. Also, in almost all cases the fine topology on an 

R0-chain is not first countable. Surprisingly for x > R0 there is at most one 
compatible first countable topology for each x-chain. 

THEOREM 2. Suppose that x is a regular uncountable cardinal and that 

{X~ : a < r}  is a z-chain o f  first countable spaces. Suppose also that the union X 
is endowed with a compatible topology so that p E X .  I f  Z(P, X) < x then 
Z( P, X) = to and the topology at p is the fine topology. 

PROOF. Let ~r be a local base at p with I ~V I < x. Fix fl < x large enough so 

that if V, W ~ ~V are such that V - W § ~ then V - W n Xp § ~ .  Since Xp 

is first countable we can choose a countable ~r c ~ r  so that { V O Xp : V~  ~r} 

is a base for p in Xp. But this means that ~ is a local base for p in X. Now 

suppose that U c Xis a neighbourhood ofp in the fine topology on X. For each 

V~  ~ choose, if possible, av < x so that V - U n X~ v @ ~ .  Choose ot < x so 

that a v < a for each V U ~ .  Let W be an X~-neighbourhood of p such that 
W c U. Now choose a VE ~ so that V n X, c W, therefore it must be the 
case that V C U and ~r is a base at p in the fine topology. �9 

We can now consider the following question. 
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MAIN QUESTION. Suppose that x is a regular cardinal and X, with the fine 

topology, is the union of  an increasing x-chain of  first countable spaces. Is X 

necessarily first countable? 

We have ment ioned that the answer to the quest ion is "no" if  x -- R0. We 

shall demonstrate  that the answer to the question is also "no" for x = R ~ but  is 

independent  of  the usual axioms of  set theory for x >_- •2 (relative to the 

consistency of  the existence of  a weakly compact  cardinal). 

For  the case x = R1, we present this simple example. Let X = o91 U ( p }  be 

the one point  compactification of  to1 with the discrete topology. Let each X, be 

the subspace a U { p }. It is not hard to see that the fine topology is the same as 

the original topology on X. 

THE SET-THEORETIC TRANSLATION. We follow standard practices with 

respect to set-theoretic notation. "to is the set o f  all functions from the ordinal a 

into the ordinal o9. For two f u n c t i o n s f a n d  g in this set we write f -  < _ g to mean 

tha t f ( f l )  < g(fl) for each fl ~ a. I f F  c ~09 and G c Pto we say that G dominates  

F to mean that, for each f ~ F ,  there is some g E G  such that ( f l  7) =< (g I 7) 

where 7 is the min imum of  a and ft. When we say that G dominates  f ,  we mean 

that G dominates  { f } .  

DEFINITION 3. For any ordinal number  x call { f~,. : a ~  x, n ~ to} a x- 

matrix if  each f~,. ~ "09. In addition, we say that it is a coherent x-matrix if  for 

each fl < a < x sup{ f, , ,(fl)  : n E to}  = 09 and each pair o f  colmns dominates  

each other. That  is, for all a and fl, ( f~,n : = n E to } dominates  { fa,, : n E o9 }. 

We say that a x-matrix M extends to a x + 1-matrix N if for each a E x and 

n E09, M a n d  N h a v e  the same a, n entry. 
We can now transform our question onto one about  coherent matrices of  

functions. 

THEOREM 4. Let x be a fixed uncountable regular cardinal. The following 
are equivalent. 

(a) Any space X which has the fine topology from an increasing x-chain of first 
countable spaces is also first countable. 

(b) Any Hausdorff space X with one non-isolated point which has the fine 
topology from an increasing x-chain of first countable spaces is also first 
countable. 

(c) Every coherent x-matrix can be extended to a coherent x + 1-matrix. 
(d) For each coherent x-matrix there is a countable A C ~09 such that every 
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g ~ ~o9 which is dominated by each column of the matrix is also domi- 
nated by A. 

Before embarking on a proof, let us first examine these four conditions. The 
fine topology of  a union of a chain of regular spaces, as in (a), may even fail to 

be Hausdorff; and so we could leave the realm of set-theoretic topology. 

However, the equivalence with (b) shows that we can just consider these zero- 

dimensional spaces. 

Each coherent x-matrix M gives rise to a collection of functions in ~o9, 

namely those which are dominated by each column of the matrix M. From 

now on let's call this collection F(M). Now, (d) says that F(M) has "outer" 

cofinality R0 in the _-< order on ~o9; while (c) says that a countable cofinal set 

can actually be found within F(M) itself. 

PROOF. (a) implies (b) is trivial; (c) implies (d) is easy since x is uncount- 

able. We prove that (b) implies (c) and then prove that (d) implies (a). 

Assume (b), and let M = { f~,n : a ~ x, n ~ 09 } be a coherent x-matrix. We 
will define an increasing x-chain of spaces which will allow (b) to tell us how to 

extend M. Pick p ~ x  • 09 and, each aEx,  let X, = { p} U (a • to). Let z, be 

the topology on X~ generated by ~ ( a  • co), the power set o f a  • o9, and the 

following neighbourhoods of p: 

U~..={(,8, k):f~..(fl)<=k}U{p} for each n Eto. 

Each (X., z~} is clearly first countable. The coherence of M shows that we 
have constructed an increasing x-chain whose union with the fine topology is a 
Hausdorff space with one non-isolated point. Let { 1I. : n E o9 } be a local base 
for p in X and for each n ~ o9, let 

f~,.(fl) = min{k : {fl} X (to - k)} c II.. 

For each fl E x we have such a k because II, N Xp +, is open in Xp + ~. We wish to 

show that M'  = M U { f~,. : n E to } is coherent. The reader can check that the 

fact that each X. M 1I,. is open in X~ gives that column a dominates column x. 

The fact that { Vn:n ~o9} forms a local base at p shows that column x 

dominates each column a. 

Now assume (d) and let X = U . < .  X. be the fine union of  an increasing 

x-chain of first countable spaces. Let p E X. I fp  has a minimal neighbourhood 
in each X., then p has a minimal neighbourhood in Xand  Xis first countable at 

p; hence without loss of  generality we can assume that for each a < x there is a 

strictly decreasing sequence of neighbourhoods U~.. of  p in X. such that 
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{ U.,. : n ~ to } is a basis for p in X~. For each a and n we define a function f~,. 

with domain a such that f~,.(fl) is the least k ~ to such that U#,k C U.,.. 

We claim that { f~,. : a E x, n E to } forms a coherent x-matrix. This is routine 

to check. We now invoke (d) to obtain the countable set A of functions. To each 

f ~  ~to we associate the set 

U s = (x E X :  x ~ U~,~.)} for cofinally many a E x .  

Clearly p E U s and for any neighbourhood V of p in X there is an f E  ~to such 

that U s c V. Thus in order to prove (a) it suffices to show that U s is open. We 

must show that for each a ~ x the set X, - U s is closed in X~. Let Y be a count- 

able subset of X~ - Us; since X~ is first countable, it will suffice to show that no 

point in X~ O U s is a limit point of  Y. Choose fl < x large enough so that 

Y n U~,~) = ~ for all 7 > ft. Now for each x E X~ n (::there is a ~ > fl so that 

x ~ U~,~) n X~ which is an open neighbourhood of x in X~ missing Y. �9 

Combining the above theorem with Theorem 2 we obtain the following. 

COROLLARY 5. Suppose x is a regular cardinal and M is a coherent 

x-matrix which cannot be extended to a coherent x + 1-matrix. Then there is no 

subset of~to o f  size less than x which dominates F(M). 

Consistency one way 

Our aim now is to exhibit models of  set theory in which the answer to the 

Main Question is negative for various cardinals x > RI. 

DEFINITION 6. Given a cardinal x and a set E c x, I~(E)  is the statement: 

there is a sequence (C~" a~ l im(x) )  such that C~ is cub in a and y e a  n C" 

implies 7 ~ E and C r = ~ n C~. 

It is folklore that 12o, implies the existence of  a stationary set E c S ~ = 

{a ~ to2" cf(a) = to } for which no~(E) holds; moreover Jensen has proven that 

in L for each non-weakly compact x, there is a stationary E c S O such that 

EI~(E) holds. 

THEOREM 7. I f  x is an uncountable regular cardinal such that I~(E) holds 

for some stationary E C S O , then the answer to the Main Question is "no". In 

particular, there is a coherent r-matrix which does not extend to a coherent 

x + 1-matrix. 
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It turns out that we can prove Theorem 7 by constructing a rather special 

kind of x-matrix. 

DEFINITION 8. 

when 
Two functions f E  ~to and g C Pto are said to be parallel 

sup{ If(Y) - g(7) I : 7 Ca  N fl) < to. 

A family of functions is said to be a parallel family if each pair of  functions in 

the family is parallel. 

The connection with matrices of functions comes from the next lemma. 

LEMMA 9. Suppose x is a regular uncountable cardinal. I f  each coherent 
x-matrix can be extended to a coherent x + 1-matrix, then for each parallel 
family {f~C~to :aCx}  of functions, there is an fE~to which is parallel to 
each f~. 

PROOF. Let M be the coherent r-matrix obtained by defining f~,, (fl) = 

f~(fl)+n for each f l < a < w  and nCto .  Now suppose that {f~ , . :nCto} 

extends M to a coherent x + 1-matrix. For all a C x, there are m. ,  n~ so that 

L,0_-< Z,.. =<s 

Choose n so that (a C x: n~ = n } is cofinal. It is routine to verify that f~,. is 

parallel to each f~. �9 

Therefore to prove Theorem 7 it suffices to build a parallel family 

{ f~c  ~to : a C x }  for which there is n o f C  ~to parallel to each f~. 

PROOF OF THEOREM 7. Fix the sequence (C~ : o~Elim(x)) and E as above. 

Note that for a E E  we may redefine C~ if necessary and so assume that Ca has 
order type to for all ~ C E .  We define the parallel family {f~: a C x }  by 

induction. If we have already defined f~ then we shall simply define fa+l to be 

f~ U (a, 0); clearly f~+l is parallel tof~. Now suppose that aCl im(x)  and we 

have inductively defined the parallel family {fp:fl C~} so that if 7 C C~ then 

f =f. ly. 
Case 1. aCE.  Now C. = {a. : n ~to} is an increasing to-sequence which 

is cofinal in a and we may assume that a0 = 0. Define f~ so that for each n C to 

we have 

f~l[a.,a.+,)=f,,.+,+n. 

Clearly (by induction)f~ is parallel to each f~. 
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Case 2. a q~ E and C'~ is cofinal in a. By our inductive assumption f ,  = 

Uric. fr is a function and clearly satisfies the inductive assumption. 
Case 3. aq~E and C . =  C~oU {a,: n e r o }  with {a,: nEog} increasing 

cofinal in a. Put 

L=L~ U 

Again it is clear that f~ continues the induction. 
Now suppose that f E  ~o9 is parallel to eachf~. Choose an n E 09 so tha t f - (n)  

is cofinal in x. Since E is stationary, there is an a E E  so that i f ( n )  n a is 
cofinal in a. However fcannot  be parallel to f ,  since the 'lim inf' off ,  goes to 
infinity. �9 

HISTORICAL REMARK 10. In our first version of this paper we were only 
able to construct a x-matrix which could not be extended from the hypotheses 
in Theorem 7. We gave some further constructions of parallel families by both 
forcing and diamond-like assumptions. S. Todor~evi6 then proved the follow- 
ing in [8]: 

If x is not weakly compact in L then there is a family { f ~  "to : a ~ x }  of 
parallel functions such that there is no f ~  ~o9 parallel to each f , .  

We then noticed that a slight modification of our original proof proves 
Theorem 7 and we have chosen to include the shorter proof of this weaker 
(than Todor~evi6s) theorem for the sake of completeness. 

WEAKLY COMPACT X. AS we discussed above we have demonstrated that 
the answer to the Main Question is "no" (in L) for every regular uncountable 
cardinal which is not weakly compact. Even more is true; by Todor~evi6's 
result the answer is "no" for any cardinal which is not weakly compact in L. 
Let us demonstrate that this assumption is necessary. 

The following proposition lists the only properties of supercompact and 
weakly compact cardinals which we shall need. 

PROPOSITION 1 1. (i) Suppose 0 is weakly compact. For any Ill-formula 

{o( X~ . . . . .  X, ) and any A1, . . . , A, in Vo + ~ such that ( Vo, E VI ~ . . . .  , A, ) ~ {o there 
is a strongly inaccessible 2 < 0 such that Va is an elementary submodel of  Vo and 

(V~,~ ,A ,  n Va . . . .  ,A ,  n Va)~{o. 

(ii) Suppose 0 is supercompact. For any x >= 0 and any Ill-formula 

q(X~ . . . .  ,X , )  and any A~ . . . . .  A,  in V~+~ such that ( V ~ , ~ , A ~ , . . .  ,A,)r 
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there is a strongly inaccessible 2 < 0 and an elementary submodel M o f  V~ such 

that I M[ < O, M r V~ -- V~ and 

( M , ~ , A ~  n M , . . . , A ,  N M )  ~(a. 

PROOF. For the proof of (i), look in [5] page 297 or [2] page 171. Part (ii) 

follows from [6]; our restriction to HI formulas here is unnecessary. �9 

Part (ii) shows that what weak compactness does for x = 0, supercompact- 

ness does for all x > O. The reader does not need to recall the exact definition 

of  these cardinals but we will give the explicit definition of a Ill-formula. A 

Ill-formula ~ is a formula of set theory in two types of variables, x and X; 
furthermore ~ is of  the form VXdu(Xo, X~ . . . . .  X,)  where g/is a formula of the 

usual predicate logic in the language { e ,  Xo . . . .  , X,  } where the X~ are unary 

predicate symbols. If M is a set and A~ . . . .  , A, are subsets of  M we write 

(M, e ,  A ~ , . . . ,  A , )  ~ q~ if we have ~uU(A0,..., A,) for all A0 _C M. 

THEOREM 12. Suppose that x is an uncountable weakly compact cardinal. 

The answer to the Main Question is "yes" for x. I f  x is supercompact then the 

answer to the Main Question is "yes"for all uncountable regular 0 > x. 

PROOF. We shall just prove the theorem for the case that x is weakly 

compact. By Theorem 4 it suffices to show that every coherent x-matrix can be 
extended. The x-matrix can be viewed as a function F :  Ix] 2 X co ~ co where 
F(ot, fl, n)=f~, , ( f l )  for o~>p and n e c o .  We can express that the matrix 
cannot be extended by 

( V H E  ~•176 3 , e x )  

[( 3 m < co)(Vn < co)( 3fl < a)(F(a, fl, n) < H O t ,  m)) 

v ( q n < co)( V m < co)( 9 fl < a)(F(a, fl, n) > H(fl ,  m))]. 

Therefore the assertion that F cannot be extended is a Ill-formula and we 
obtain a 2 < x such that (essentially) Va + l r F [ [2] 2 • co cannot be extended. 

From this it clearly follows that F[[,W• co cannot be extended. This, 

however, contradicts the fact that F itself extends its restriction. �9 

Consistency the other way 

In this section we demonstrate the relative consistency of a "yes" answer to 
the Main Question for x > R2. We use the equivalent (c) of Theorem 4. The 
general technique we follow is fairly standard. We employ a forcing iteration Pe 
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of length 0 where 0 is, for example, a supercompact cardinal and Po is either the 
L6vy or the Mitchell collapse of 0 to •2. We proceed indirectly. Suppose 
V[G] ~ M is a coherent x-matrix which cannot be extended and x >_- R 2. We fix 
a name P" c [/C] 2 X 09 X to X Po for M. Since the forcing iteration has the 0 
chain condition, it is straightforward to check, similar to Theorem 1 2, that the 
corresponding forcing statement is a Hl-statement over V~. Therefore we 
obtain, by Proposition 1 l, that there is some strongly inaccessible 2 < 0 and 

some I E [x] <~ so that 

I~'e~ ~ I [112 X to is a coherent matrix which cannot be extended. 

Therefore if we let G~ = G N P~ and choose M '  c M corresponding to I we 

have that 
V[G~] ~ M'  is a coherent matrix which cannot be extended. 

But now we know that M' can be extended in V[G], hence we obtain our 
contradiction by proving what are known as "preservation lemmas". That is, it 
remains only to show that forcing with the "tail" of the iteration (i.e. Po/P~) will 
not introduce an extension to a coherent matrix from the ground model 
(V[G~]) which could not be extended in the ground model. Of  course, for the 
forcings mentioned above the tail of the forcing is isomorphic to the entire 

itertion. 
The definition of  the Ldvy collapse of  O with countable conditions, Lv(0, tol), 

can be found in [5] along with the well-known proofs of the following 

proposition. 

PROPOSITION 1 3. Suppose 0 is strongly inaccessible. 
(i) Lv(0, too is to:closed and has the O-c.c. 

(ii) I f  2 < 0 ,  then Lv(0, t o0=Lv(A ,  t o0 .Q ,  such that i f  Ga is 
Lv(2, toO-generic, then 

V[Gd O. = Lv(0, toO. 

(iii) I f  G is Lv(0, tol)-generic then 

V[G]V 2~o= RI and 2 ~, = R 2 = 0 and R1 = R v. 

The Mitchell collapse Mi(0) of 0 is defined in [7] and the following 
proposition is proved therein. However, part (i) is not explicitly stated there. 

PROPOSITION 14. Suppose that 0 is strongly inaccessible. 
(i) There is an Ro such that Mi(0) �9 R0 is forcing equivalent to Fn(0, 2) X Q0 
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where Qo is og~-closed and Fn(0, 2) is the usual poset for adding Cohen 
reals. 

(ii) I f  2 < 0 is a limit ordinal, then Mi(0) = Mi(2) �9 Q where, for any 

Mi(A)-generic Ga, 

V[Ga] ~ Q -~ Mi(O). 

(iii) Mi(O) has the O-c.c. 

(iv) I f  G is Mi(O)-generic, then 

V[G]r  and • l = •  ft. 

we now prove the preservation lemmas. 

PROPOSITION 15. Suppose that P is either Fn(0, 2) or is an og~-closed poset 

and suppose that G is P-generic over V. Suppose 

V ~ X > Rt is regular and M = { f~,, : a < x, n < o9 } is a coherent x-matrix. 

Then V[G] ~ F(M) N V is cofinal in F(M). 

Recall that the definition of  F(M) was given after the s tatement  of  

Theorem 4. 

PROOF. Suppose p E P and p I~" h E F(M). First suppose that for some 
p ' <  p, for each a E x ,  there is an me such that p '  ]~-h < f,,m.- Define, in this 

case, gE~o9 by g(fl) = min{ f,,,,,(fl) : p '  ][- h --< f,,m.}. It is easy to check that 
p' ][- h <= g and g E V r) F(M). 

Therefore we may suppose that for each p' < p there is an a < x such that, 

for any m E to, p '  does not force h _-< f,,,,. We can then define Po = P andp ,  for 

each s E <o, o9 by recursion as follows. Let as be defined as the min imum of  

{ a < x :  V m E o g n p s  [[-h <-_f~,,.}. 

In case P is Fn(0, 2), define { P r .  : n E o9 } to be a maximal-below-ps antichain 

so that there is an indexing of  o9 { k. : n E co } so that ps^. [[- h ~ f~,.k.. In case P is 

og~-closed we do not require that { ps^. : n Eog} is maximal below Ps hence we 

may then assume that k. = n. 

Now let a = sup(as:  s E <,oo9} and note that 5 < x. 

Let us complete the case that P is ogl-Closed. For  each n E t a  and each 

s E <o, o9 there is an integer k(s, n) such that f,,,  _-< f,,,k(s,,) since the matrix is 

coherent. Therefore we can choose the recursively defined branch {s. : n E to ) 
where s, + ~ = s, ̂  k(s,,  n). Since P is tat-closed we can choose Po, below each Ps. 
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and note that Po, ]b h ~f~,n for each n E to since P,o [[- h "~f~.,kO.,n ) and f~,~ _-< 
fa~.,kO.,,). Therefore P,o [~- h ~ F(M) - -  a contradiction. 

Now we complete the Cohen real proof. Suppose that q < p and m ~ to are 
such that q [[- h _-< f~,m (there must be such a q since p forces h is in F(M)). It can 
then be proved that there must be s E <~ so that ps^, is compatible with q for 
each n ~ t o .  With such an s, we can now choose n large enough so that 
fa,m =< f~,,~ and obtain a contradiction from the fact that ps^n [[- h _-< f~,m. �9 

COROLLARY 16. Suppose G is Mi(O)-generic over V for some cardinal O. 
Suppose further that V ~ K > R1 is a regular cardinal and M =  ( f,,~ : a < ~ : ,  
n Eto) is a coherent r~-matrix. Then V[G] ~F(M) N Vis cofinal in F(M). 

PROOF. Choose /~0 as in Proposition 14 so that Mi(0)*R0 is forcing 
isomorphic to Qe • Fn(0, 2) where Q0 is tol-Closed. If  H is R0-generic over 
V[G] then, by Proposition 15, 

V[G . H ]  ~F(M) n Vis cofinal in F(M) 

since we can regard the extension as being obtained by first forcing with the 
to|-closed poset Qe followed by forcing with Fn(0, 2). 

It of course follows that V[G] ~ F(M) n V is cofinal in F(M). �9 

Putting all the ingredients together we finally obtain the following theorem. 

THEOREM 17. Let P be the partial orders described below and G be P- 
generic over V. CH denotes the continuum hypothesis. 

(i) I f  O is supercompact and P is Lv(0, to~), then 
V[G] ~ CH holds and for each regular K >= R2, the answer to the Main 
Question is "yes". 

(ii) I f  O is supercompact and P is Mi(0), then 
V[G] ~ CH fails and for each regular ~ > R2, the answer to the Main 
Question is "yes". 

(iii) I f  O is weakly compact and P is Lv(0, to~), then 
V[G] ~ CH holds and for ~: = R2, the answer to the Main Question is 
"yes'. 

(iv) I f  O is weakly compact and P is Mi(0), then 
V[G] ~ CH fails and for K = R2, the answer to the Main Question is 
"yes", 

REMARK 18. One can also prove an interesting modification of Theorem 
17, namely force that for cofinally many ~: the answer to the Main Question is 
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"yes" and for cofinally many x the answer is "no". One method is to start with 
the model produced in Theorem 17(i) and then force a "no" answer at a class of  
cardinals. This forcing would be an iteration of  the D~ forcing as in [1, 
Theorem 24]. This iteration would have an Easton-type support and Lemma 
15 guarantees that "no" answers are preserved by the tail of  the forcing. 

An alternate method only requires that there are arbitrarily large weakly 
compact cardinals rather than a supercompact cardinal. The consistency of  
this follows from that of  a measurable cardinal. However, with this method, we 
may well be stuck with a "no" answer at x + for all singular x. One uses L as the 
ground model and Lrvy collapses (with Easton support) the next weakly 
compact to the successor (or the second successor etc.) of  each weakly compact 
cardinal. In the resulting model, the answer is "yes" at x iff x is weakly compact 
in L iff x is the successor of  an uncountable regular cardinal. 
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